Hi-tech and electricians

Dodane: 15-07-2016 09:56
Hi-tech and electricians Emergency or just simple appliance repair - we can handle all, just contact us and leave your worries behind - emergency electrician Chelsea

Some facts about Electric power transmission

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines which facilitate this movement are known as a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is known as the "power grid" in North America, or just "the grid". In the United Kingdom, the network is known as the "National Grid".

A wide area synchronous grid, also known as an "interconnection" in North America, directly connects a large number of generators delivering AC power with the same relative frequency, to a large number of consumers. For example, there are four major interconnections in North America (the Western Interconnection, the Eastern Interconnection, the Quebec Interconnection and the Electric Reliability Council of Texas (ERCOT) grid), and one large grid for most of continental Europe.

Źródło: https://en.wikipedia.org/wiki/Electric_power_transmission


History of electricity - some facts

By 1890 the electric power industry was flourishing, and power companies had built thousands of power systems (both direct and alternating current) in the United States and Europe. These networks were effectively dedicated to providing electric lighting. During this time a fierce rivalry known as the "War of Currents" emerged between Thomas Edison and George Westinghouse over which form of transmission (direct or alternating current) was superior.8 In 1891, Westinghouse installed the first major power system that was designed to drive a 100 horsepower (75 kW) synchronous electric motor, not just provide electric lighting, at Telluride, Colorado.9 On the other side of the Atlantic, Mikhail Dolivo-Dobrovolsky built a 20 kV 176 km three-phase transmission line from Lauffen am Neckar to Frankfurt am Main for the Electrical Engineering Exhibition in Frankfurt.10 In 1895, after a protracted decision-making process, the Adams No. 1 generating station at Niagara Falls began transferring three-phase alternating current power to Buffalo at 11 kV. Following completion of the Niagara Falls project, new power systems increasingly chose alternating current as opposed to direct current for electrical transmission.11

Developments in power systems continued beyond the nineteenth century. In 1936 the first experimental HVDC (high voltage direct current) line using mercury arc valves was built between Schenectady and Mechanicville, New York. HVDC had previously been achieved by series-connected direct current generators and motors (the Thury system) although this suffered from serious reliability issues.12 In 1957 Siemens demonstrated the first solid-state rectifier, but it was not until the early 1970s that solid-state devices became the standard in HVDC.13 In recent times, many important developments have come from extending innovations in the ICT field to the power engineering field. For example, the development of computers meant load flow studies could be run more efficiently allowing for much better planning of power systems. Advances in information technology and telecommunication also allowed for remote control of a power system's switchgear and generators.


Źródło: https://en.wikipedia.org/wiki/Electric_power_system#History


The computer as an aid in the design of the installation

Electrical installations, especially those which will be installed in buildings with complicated structures often require the creation of a very difficult project. Special computer programs enable electricians much easier to plan where and how they will run the wire, where will be located branch and so on. In this way, more and more electricians may remind us of specialists, because the design of electrical networks at the present time is done properly only through the computer. Special programs also allow control of parameters during operation of the installation.



© 2019 http://informator.podhale.pl/